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a b s t r a c t

We investigate the accuracy of strain rates calculated directly from a robust set of velocity measurements
that were obtained in controlled experimental settings. We compare the calculated strains and strain
rates, and the corresponding deformation style, determined from sets of three vs. four velocity
measurements obtained by tracking a dense set of surface markers during experiments. The density of
our measurements, in conjunction with a well-understood model deformational setting, allows us to
relate the style and magnitude of strains to the underlying structures. We demonstrate that calculating
strain values from three measurements can be irrelevant to the geologic structures even if they are
mathematically correct, but that one can avoid some of these deceptive results by using quadrangles to
calculate strain. We demonstrate the utility of such strain calculations in interpreting strain partitioning
in obliquely convergent analog models for continuously and discontinuously deforming materials. In
addition, we compare direct calculations with those obtained by determining strains from the derivatives
of continuous spline functions that have been fit to the velocity field.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Measurements of local crustal velocity fields are frequently used
to understand observed deformation in the context of larger-scale
plate motions. Likewise, precise measurement of displacements in
analog models and calculation of the corresponding strain fields
can contribute greatly to the effectiveness of such models for
testing ideas about the mechanics of such plate boundary regions.
Our goal is to compare sandbox deformation with nature to
understand better the tectonics of orogenic belts, particularly for
oblique convergence or complex plate geometries. The key geologic
observables, such as rock deformation and seismic moment, that
reveal past and ongoing deformation are, of course, governed by
strain rather than displacement or velocity. It is therefore essential
to extract from displacement measurements in analog models the
best possible values for the distribution of strain and strain rate
across the model orogens.

Strain is reference frame independent, depending only upon
displacement gradients. However, a single set of observed
displacements can yield very different solutions for the strain field
depending upon how the observations are grouped. In an attempt
to quantify the style and magnitude of deformation in analog
models we have precisely measured the surface displacements
resulting from convergence in analog models. To achieve our
All rights reserved.
overall goal of comparing sandbox deformation with natural oro-
gens we must obtain strain estimates that are indicative of the
actual structural development that is occurring within the
experiment.

In the controlled and well-characterized ‘tectonic’ setting of an
analog model we can examine the accuracy of strain fields calcu-
lated solely from velocity measurements. This allows us to test the
validity of a range of assumptions that may be made when using
a 2D-velocity field to quantify strain rates, both in nature and in
analog and numerical modeling.

Analog modeling has successfully improved our understanding
of convergent margin mechanics, providing insight into the
development of broadly useful analytical models (e.g., Hubbert and
Rubey, 1959; Davis et al., 1983; Koons and Henderson, 1995; Wang
and Davis, 1996; Mulugeta, 1988; Martinez et al., 2002; McClay
et al., 2004; Haq and Davis, 2008). The usefulness of analog models
stems from the inherent 3-dimensionality of the deformation and
the relative simplicity with which experimental parameters, such
as boundary conditions and geometry, can be tested.

In the experiments described here, we used a large motor-
driven ‘sandbox’ apparatus in which deformation is monitored with
a digital camera for the duration of the experiment. Applying
techniques often used in remote sensing and geodesy (e.g., Jensen,
2000), we track the displacement of surface markers to determine
finite deformation. In each experiment, we make a large number of
direct measurements of displacement, from which we calculate
velocity, strain, and strain rate fields, and monitor the growth of
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topography. These measurements provide comparison to numer-
ical techniques or geophysical data, such as earthquake mecha-
nisms and GPS velocities (Haq, 2004).

2. Examples of strain calculation

The determination of a physically representative, as opposed to
mathematically accurate but geologically uninformative, value of
strain (or strain rate) requires careful design of the network for
sampling the displacement (or velocity) field. As we demonstrate
below, this becomes particularly important when, as is now
possible in analog modeling, the distribution of measurements
approaches the same length scale as the deformation. The example
in Fig. 1 is also used to give a geologic context for the calculations
and the analog models in this paper.

To calculate deformation each network can be sampled by either
triangles or as quadrilaterals. Four stations arranged in a quadri-
lateral (Fig. 2) can be arranged in either of two possible triangle-
pair combinations: in this case, upper-left and lower-right (UL–LR
Fig. 2A) and lower-left and upper-right (LL–UR Fig. 2B), as well as
the quadrilateral itself (Fig. 2C). The five ‘X’ marks in these figures
represent the centroids (polygon center-of-area points) where we
plot the calculated strain values – the four values from the triangles
and the quadrilateral (‘Quad’) strain calculated from their area-
weighted average. In the following examples, the principal strain
axes are calculated for the three possible networks corresponding
to each region: two triangle-based networks and one based on
quadrilaterals. Determining 2-D strain directly from displacement
gradients requires only three observations. However, as we will
demonstrate, such a calculation can easily lead to a solution that is
not physically meaningful. For this reason, we have developed an
algorithm that utilizes pairs of side-sharing triangles to determine
the area-weighted strain of the corresponding quadrilateral.

The four points of a quadrilateral at which velocities are deter-
mined define four triangles. Using the finite strain equations of
Means (1976), we determine the strain (strain rate) tensor for each
triangle. The triangles may be grouped in two ways to calculate
velocity gradients and to encompass the entire quadrilateral
(‘A’ vs. ‘B’ in Fig. 2). For each possible triangle pairings, we determine
a strain tensor by an area-weighted average of the corresponding
tensor components corresponding to the paired triangles. Each of
the two pairings may give a slightly different solution for the strain,
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Fig. 1. A and B: Thrust faults sampled by two different displacement-measurement netw
16-station (numbered in grey) networks. In each configuration, the faults slip the same am
and it is not always possible to know a priori which triangle pairing
will yield a more accurate and physically meaningful result.
Therefore, we use the average of the strain tensor components from
both sets of triangle pairings to determine the quadrangle strain (or
strain rate) tensor. While this algorithm sacrifices some of the
resolution available with triangle-based calculations, it consistently
determines a more meaningful solution for strain in our analog
models. Polygons are particularly useful for determining finite
strain in analog models as marker points are inevitably lost and the
grid becomes very irregular (Appendix Fig. 1).

We use the treatment of Means (1976) for determining the
Lagrangian 2-d finite strain tensor (Eij), where

Eij ¼
1
2

"
vui

vXj
þ

vuj

vXi
þ vuk

vXi

vuk

vXj

#
(1)

and ui and uj are the displacements and Xi and Xj are the lengths in
the Cartesian directions.

Below are two of the four terms that arise from the expansion of
the tensor notation in Equation (1).
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note that as the displacements become smaller, the higher-order
terms in Equations (2) and (3) quickly become insignificant and
these finite strain equations reduce to the expressions for instan-
taneous strain. Therefore finite strain equations are valid to use for
small displacements.

The principal axes directions and magnitudes, determined from
the finite strain tensors, are plotted as red (contraction) and blue
(extension) vectors (Figs. 3 and 4). In each of the two triangle pairs
(UL–LR and LL–UR), strain tensor values are averaged to provide an
accurate value for mean strain across the entire quadrangle. Their
average is plotted as the ‘Quadrangle’ strain and is the first solution
in each row of Figs. 3 and 4 (See tables in Appendix for the posi-
tions, velocities, and calculated strain tensors illustrated by these
figures).
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Fig. 2. A–C: Possible connections from a simple four-station network. The ‘X’ marks
the spot where the principal strains will be plotted for the corresponding triangle or
quadrangle.
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The calculation of the strain in any particular part of the simple
examples in Fig. 1 or in our analog models begins with the grouping
of the sets of ‘stations’ (analog experiment marker dots) that
correspond to velocity measurements for calculating strain. In
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Fig. 3. Simple set of calculations of strain for a strain field that is homogeneous (A–D)
measurement points. The grey arrows indicate the displacements used in each calculation.
result from either discrete or continuous deformation. Note that while triangle-pair solutio
particular, the use of triangles (3 measurements) or quadrangles
(four measurements from pairs of side-sharing triangles) needs to
be evaluated. Whether the deformation occurred on discrete faults
or in a viscous, distributed manner, it may be homogeneous on the
scale of the sampling network (left side of Fig. 3). Likewise (right
side of Fig. 3) it may be inhomogeneous on the scale of the network
elements. In the latter case, the strain calculated using individual
triangles is dependent upon the orientation of each triangle with
respect to the deformation field – a problem that is alleviated by
using a quadrilateral composed of a pair of those same triangles
(Fig. 2C). Fig. 1A represents the case in which deformation, either
homogeneous or inhomogeneous, is fortuitously distributed evenly
and symmetrically across much of the network within the quad-
rangles. In general, however, this optimal orientation with respect
to the deformation is not achieved for the individual triangles.
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In each network the same bulk deformation is sampled. These displacement fields can
ns vary greatly the quadrangles are consistent.
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Fig. 4. Strain calculated for a pair of thrust faults using two different networks. The principal strain axes are indicated by red (contraction) and blue (extension) lines that are scaled
by strain magnitude. In each case, the azimuth of the most contractional principal strain is indicated in black above the strain axes. In configuration 4A, the structures are
symmetrically sampled in the quadrangles, each of which therefore gives a consistent solution for the strain field. In Fig. 4B, the network is rotated by 30� , and the component
triangles of each quadrangle do not symmetrically sample the faults, so the quadrangles also yield variable solutions for the strain. The values in black are the azimuths of the
principal contraction axes.
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When the points for velocity measurement are widely spaced
with respect to discrete faulting (or the faulting is closely and
evenly spaced within the network), the deformation field is indis-
tinguishable from a smooth field, not unlike an evenly stretched
rubber sheet. In that case (Fig. 3 A–D), the strain values derived
from triangles are independent of point sampling – the calculated
strain is always correct and geologically meaningful with respect to
the net displacement due to faulting.

If, however, the deformation is unevenly distributed within the
sub-networks (Fig. 3 E–H), calculated strain using groupings of
three points does not represent the deformation style except for
a fortuitous geometry. In contrast, the corresponding quadrangle
often yields calculated strains indicative of deformation style even
when triangles do not (Fig. 3 F–H).

Although it is not standard procedure to use triangles in natural
zones of deformation, it may be tempting to do so in the data-rich
environment of analog modeling. However, a random grid geom-
etry or inhomogeneity of strain greatly limits the utility of this
approach (Figs. 3F–H and 4B) even in a continuous medium.
Consider, for example, the highlighted polygons a3 and a8 across
Fig. 4A. As illustrated in Fig. 1, we know that the region is under-
going east–west contraction by two dip-slip faults. Each triangle in
polygons a3 and a8 (Fig. 4A) samples at most one fault. The left–
right triangle-pair solution samples the deformation ideally,
showing east–west shortening on the left and no deformation on
the right. The top and bottom triangles, however, each have two
points on the same (rightmost) thrust sheet and one on the middle
sheet, between the two faults. That point moves with respect to the
other two in a direction that is oblique to the line between them, in
a clockwise sense for the top triangle and a counter-clockwise sense
for the bottom one – introducing an inevitable handedness to the
calculated velocity gradients and strains. This effect is clearest with
discrete faults but can also occur with continuous deformation
when strain gradients occur.

The left–right triangle pair in Fig. 4A gives the correct answer
with better spatial resolution than a polygon, whereas the top–
bottom triangles give physically meaningless strain values with
regard to the faulting despite being mathematically accurate. In this
case the polygon average value invariably gives a geologically and
mathematically correct answer. This last result is not surprising, as
the same total strain exists within the region.

The strains calculated for the triangles and polygon for the
rotated network in Fig. 4B, however, are all very different. The
calculated strains do not represent the true ‘tectonics’ of east–west
contraction, as calculated for Fig. 1 and Fig. 4A. While the average
polygon value for the top–bottom triangles in the optimally
oriented network in Fig. 4A gives the expected answer, none of the
solutions for the triangle pairings in Fig. 4B are indicative of the
actual sense of east–west contraction. In Fig. 1B or Fig. 4B, it is
important to note that the deceptiveness of such strain calculations
is not an artifact of the particular network geometry, nor of the
relative orientation of the fault slip. The non-physical result of
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Fig. 4B is the rule for discrete faulting, where the sample network
for displacement measurement has a spacing comparable to that of
the individual structures accommodating deformation. This situa-
tion is the case except for a limited number of network orientations
with special triangle symmetry, such as the example in Figs. 1A and
4A, and of a grid rotated 45� from it. Because networks in analog
models can be very dense compared to the scale of the structures,
the spacing and orientation of those networks is consequently
a particularly important consideration for tracking strain in analog
models.

In these examples, with their simply defined tectonic style, an
asymmetry in deformation clearly does not exist physically but
appears in some calculations of strain, particularly when
measurements are taken on a scale that is comparable to or smaller
than the individual structures, such that multiple points of a single
strain-calculation quadrangle are located on the same thrust sheet.
Such difficulties are to be expected as the measurement network
becomes similar in spacing to the scale of the discrete structure.
The recognition of such misleading results, which is obvious in this
idealized setting and in the simplest analog models, may be far
more problematical when dealing with measurements in more
complex experiments for which, like the Earth, the actual defor-
mation is not well known. Even when the deformation is regionally
homogenous (e.g., continuous deformation or evenly spaced faults
with equal slip), as network scale approaches that of the structures,
the sampling of the active structures can yield a solution for strain
that lacks physical insight, precluding comparison of analog model
results to natural orogens.

This result is further demonstrated in an analog modeling
experiments of convergent settings, described below, where
motion is oblique to the model margin, and strain is being actively
partitioned. Analog modeling permits an arbitrarily large number
of strain marker points so the density and location of points is
typically not a constraint in obtaining high spatial resolution on
strain measurements. On the other hand, if a strain-calculation
triangle or quadrilateral is located entirely within a single thrust
sheet in a highly deforming region, it will yield essentially zero
strain. Conversely, depending on the sampling, highly localized
strain from faulting can be smeared out over large regions. Even
with an initial network spacing that is dense compared to the
developing structures, this can be a consideration in analog
modeling if marker dots have disappeared by having been over-
thrust (or lost due to extension).

3. Overview of the modeling technique

Our experimental procedure has two distinct aspects: analog
modeling, which is similar in its implementation to our earlier
models (e.g., Haq and Davis, 1997, 2008), and the automated
acquisition of XY-coordinate data that are used to determine net
velocity and the deformation tensor. The basic configuration
consists of an analog forearc, including a ‘backstop’ (e.g., Byrne
et al., 1993; Haq and Davis, 2008), which is configured here as
a Plexiglas plate in front of a pushing backwall (Fig. 5B). Once the
experimental geometry is configured, a uniformly thick layer of
material to simulate sedimentary rocks of the upper crust is placed
over the plates (Fig. 5B). We have characterized the yield properties
for these frictional and viscous materials, which deform as a result
of displacement of the plate by the backwall. The frictional material
is a weakly dilatant, subangular carbonate sand with a density of
1.65 g cm�3, a static internal friction coefficient of approximately
0.56 (internal friction angle 4¼ 29�), and time-independent fric-
tional behavior at reasonable displacement strain rates (Byerlee,
1978; Paterson, 1978). The ductile material is a viscous gel with
a density of 1.32 g cm�3 and a nearly Newtonian viscosity of
approximately 105 Pa over a wide range of strain rates. Below about
10 Pa, it displays Bingham behavior and ceases to flow. During an
experiment, a sequence of digital images of the model surface (in
plan-view) is obtained from a fixed position relative to the pushing
backwall, at small intervals, using a digital camera (Haq, 2004).

An initially rectangular grid of marker points or ‘geodetic
stations’ on the surface of the sand is tracked for the purpose of
determining a continuous displacement field for the duration of the
experiment. The velocities determined for a given image pair are
networked together in order to determine a strain rate field. Any
subset of at least three connected points in the network is sufficient
to determine an XY-plane strain rate tensor as well as the no-
length-change directions, and (if desired) the dilatation, shear
strain and rotation rate fields. With this technique, the locations of
the ‘stations’ are determined to a very high precision (the darkness-
weighted midpoints of the dots are reproducible to better than
0.1 mm). With the acquisition of numerous high-resolution images,
quantitative examination of the development of structures during
the experiment is achievable with sufficient spatial and temporal
resolution. By employing an automated algorithm, we correlate the
locations of marker points in subsequent images and determine
the polygon networks. We then can easily and accurately calculate
the surface velocity (displacement rate) and strain rate fields over
numerous intervals. In each interval, we apply a Lagrangian
approach to calculating strain (Means, 1976), using only those
marker points that have survived without being over-thrust and for
which we can determine coordinates with a high confidence. With
this technique we add rigorous deformation analysis to our analog
modeling, which has already proven to be a robust modeling tool
for examining deformation.

To determine a dense velocity field from which to obtain
a highly resolved deformation field, we employ a network of
marker points containing roughly 1400 points in a 2.5 cm spacing,
about half of which become visible to the camera only when
brought into the field of view after additional convergence.
Although our grid starts out as regularly spaced, large finite strains
during the experiment quickly lead to an irregularly spaced
network (See Appendix, Fig. A1) that is constantly tracked and
regridded when necessary throughout the experiment. As the
eventual location and orientation of the model structures with
respect to the grid is not initially known, the initial network
configuration can affect the usefulness of the solution in inter-
preting deformation in an experiment.
4. Discrete deformation (frictional models and faulting)

Thus far, the discussion has been supported by calculations for
hypothetical deformation. In the next few examples, we show how
grid geometry and polygon choice can influence or obscure the
analysis of strain in analog models. In Fig. 6A–D, we use an analog
model to illustrate how sampling biases strain determination even
where the deformation is simple and well known. Fig. 6 shows an
early stage of an analog model of a convergent margin with a 45�

obliquity to plate motion, in which the strain patterns are relatively
simple and predictable. Using the displacement field in Fig. 6A we
calculate the strain for the three possible network geometries
described in Fig. 2, the top–bottom (UL–LR), and left–right (LL–UR)
triangle pairs and the quadrangle average. In evaluating the effect
of the network on strain determination the choice of network
geometry can greatly affect the style of the resulting strain field,
and thus its interpretation, even with numerous and precise
velocity measurements. For example, in Fig. 6B the network does
not optimally sample the active accommodating structures. The
style of calculated strain, with adjacent triangles alternating
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between along-strike extension and strike-slip shear, does not
reflect the actual deformation that is occurring.

The along-strike variability in the calculated strain can generate
a regular but alternating pattern that may be mathematically
correct based on the displacements but does not correctly repre-
sent the deformation of the thrust fault system. Even when
deforming structures generally intersect the network at ideal
orientations for sampling, as in the very early stages of this
experiment, not every triangle will give a solution that is physically
meaningful. Note the column (black arrow) of largely extensional
principal axes, Fig. 6C. This extension is spurious and not reflecting
reality as no dip-slip extension occurs in the model. Just to the left
of that column of strain axes there is a transition to strike-slip
deformation style, indicated by roughly equal lengths of blue
extension to red contraction axes, which is more accurate for that
portion of the model.

As suggested earlier, in a dense network the simplest solution to
this potential ambiguity would be to take the average value of pairs
of triangles, which are often more representative of the actual
deformation. The improved solution, using quadrangles, is plotted
in Fig. 6D where the triangle-pair averages are calculated from
those in Fig. 6B and C. By using quads, we trade some spatial
resolution for a solution that is more robust in areas across the
deforming region. While the systematic artifact in Fig. 6B or C is
obvious, in experiments with less regular geometries, the problem
may be less easy to detect. Therefore, we believe that it is preferable
to use quadrangles rather that triangles when possible, despite the
resultant loss of resolution.
5. Continuous deformation (viscous model – no faults)

In the examples to this point, the velocity calculations reflected
shortening accommodated by discrete frictional faulting. The
precise value of strain, however, is undefined (a singularity) at
these points. In practical applications, the locations of all the
structures accommodating displacement are frequently not known
in advance. For this reason, we also present an experiment where
deformation is continuous in a viscous medium, for an initial
geometry and subsequent model plate displacement history that is
similar to that for the deformation of the sand body. By sampling
with triangles and quadrangles in both frictional and viscous
experiments, we show that the ambiguity in deformation style does
not depend upon the singularities such as discrete faults in the
deformation field but is instead, only a function of sampling
procedure (Fig. 7). Thus, for distributed (as well as discrete)
deformation, non-optimal strain-calculation triangles may greatly
misrepresent the actual deformation style.

Theoretical predictions (e.g., Platt, 1993; Enlow and Koons,
1998), as well as observations of strain indicators and earthquake
focal mechanisms in natural convergence (e.g., Jarrard, 1986;
McCaffrey, 1996), suggest that shortening axes around the defor-
mation front for oblique convergence should be intermediate
between the plate convergence direction and the normal to strike.
In examining Figs. 6D and 7D, we see that analog models behave in
precisely this manner, partitioning part of the margin-parallel
component of convergence into strain within the orogen (Haq and
Davis, 2005). This observation, true for both frictional (Fig. 6) and
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Fig. 6. A–D: Plan-view of an early stage in an analog model experiment. Frictional model of a convergent margin with a 45� obliquity to plate motion, for illustrative purposes
shown at an early stage when deformation was simple. Figure A shows a schematic cross-section view of the deformation (top) near the backstop edge, and the image with the
displacement vectors in blue (bottom). These displacement vectors are the measured motion of the underlying marker dots and when connected create a network from which strain
is calculated. The strikes of the thrust structures run vertically in the image. Figures B to D show the principal strain axes (red¼ contraction and blue¼ extension) for each possible
triangle combination (as indicated by the triangle pairs, at top) and for the entire quadrangle.
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viscous (Fig. 7) orogens, is clear with ‘Quad’ strains comprised of
the average of triangle pairs (Figs. 6D and 7D), but is obscured if
strains are calculated using either set of triangles (Figs. 6A, B and
7A, B).

The same result is true of the observation that frictional
convergent orogens do not undergo coeval shortening and exten-
sion (Haq and Davis, 2008) so that the extension shown in Fig. 6C is
spurious. Comparison of Figs. 6D and 7D makes it possible to
recognize an important difference between the strain partitioning
behavior of frictional and viscous orogenic wedges. In frictional
wedges, much of the along-strike component of convergence is
accommodated in a relatively localized zone of shear. In a model
orogen that deforms viscously, however, the accommodation of
that along-strike component of motion is widely distributed and
shortening axes undergo little rotation across the orogen.

Analog models can provide a sufficiently high density of velocity
measurements to consider calculating strain directly from veloci-
ties, as described above. In nature, similar network densities are, at
present, generally not available. Thus, techniques that interpolate
Backstop Cross-section

A B C

Fig. 7. Early stage of an analog experiment with a pure viscous rheology and 50� obliquity
wedge (8A) deforms as a continuum. Convergence is accommodated by bulk shortening an
the velocity field are used to obtain strain estimates in areas
without direct velocity measurements (e.g., Haines and Holt, 1993;
England and Molnar, 1997; Hearn and Humphreys, 1998). Such
interpolations of velocity fields, which can also accommodate
a variety of additional geologic and geophysical constraints such as
Quaternary fault slip rates and earthquake data are used very
effectively in analyzing strain in natural plate boundary zones, and
can also be applied to analog modeling (Fig. 8). These velocity field-
fitting techniques have advantages as well as disadvantages
compared to the direct quadrangle-averaged computation of
strains from displacements. For example, fitted-field calculations
(even when using velocities only) are less susceptible to large local
error due to single bad data points. Instead, they distribute more
broadly a smaller error from the model-assumed uncertainties in
the measurements. Whereas fitted-field calculations have the
potential to yield spurious strains in areas with little or no data, or
additional modeling constraints, direct calculations generally do
not do so. Direct calculation is generally better at resolving fine
features in the strain field when the station distribution has areas of
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to convergence, again showing the area above the leading edge of the backstop. The
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Fig. 8. Strain rate solution, for the same experiment as in Fig. 7, obtained using the
technique of Haines and Holt (1993). A continuous strain rate field is obtained by
fitting the observed velocities with bi-cubic spline functions. This solution is similar to
the solution for quadrangles in Fig. 7d. The grey vectors are the velocities measured on
the surface of the model.
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very high spatial density. But neither technique fully exploits
velocity data that is too densely grouped (Appendix, Fig. 1). In
general, direct calculation tends to produce strain fields with
transitions in tectonic style that are more discrete, whereas tran-
sitions in strain style from fitted-fields, not surprisingly, tend to be
more gradual.

6. Conclusions

Compared to typical geodetic surveys of natural fold-belts,
analog models can provide more data, distributed more evenly
across a deforming region. Therefore, modelers may not want or
need to smooth data to obtain an accurate deformation field.
Modelers do, however, want to interpret correctly the active
deformation style. To this end, we recommend the use of quad-
rangles rather than triangles to analyze data grids.

For many geoscientists, strain is an intuitive way to understand
deformation that can be evident at many scales in the structures,
geodetic measurements, and instantaneous deformation, such as
earthquakes. In the examples shown here, strains in analog
modeling experiments obtained using triangles produce results
that range from faithful representations of the deformation to
highly misleading, depending upon the relationship of the network
gridding to the structures. This result is independent of whether
the deformation is continuous or localized on discrete singularities.
Using quadrangles to calculate the strain in our models allows us to
yield results that are consistent with model deformation. Such
careful analysis of analog models resolves key differences between
models, such as the localized strain partitioning behavior of our
frictional models versus the broad accommodation of oblique
convergence in viscous models.

Because strain inherently assumes a continuum, significant
problems can result from the mathematically correct calculation of
strain from a data network that is tight with respect to the
structural scale. Our examples illustrate some pitfalls of even
careful use of triangles (or 3 velocities) when determining strain
and strain rate, and show that the use of quadrangles, or a spline-
calculated continuous field, can be significantly more reliable and
is therefore preferable despite the accompanying loss of spatial
resolution. By avoiding the determination of mathematically
correct but geologically invalid strain from unconstrained velocity
fields, the calculated strain fields determined in analog experi-
ments become far more useful for gaining physical insight into the
deformation.
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